Abstract: FP6COMMNET is an informal network of communication managers in 15 research consortia which receive funds from the European Union (EU)’s Sixth Framework Programme. About 3000 scientists are fully or partly engaged in the consortia forming the FP6COMMNET at present. The members of FP6COMMNET address common issues related to the design and implementation of communication activities within European Union’s funded projects in the health and food sector.

Keywords: Food and health research, Communicating research, European Union’s Framework Programmes.

1. INTRODUCTION

The authors are members of FP6COMMNET, an informal network of communication managers in research consortia which receive funds from the European Union (EU)’s Sixth Framework Programme (FP6). Members of FP6COMMNET are the following:
consortia: SAFE FOODs, GA2LEN, DI GENES, LIPGENE, SEAFOODplus, CASCADE, NoMiracle, EuroPrevall, EADGENE, NeuroPrions, NuGO, MEDVETNET, TRACE, EICOSANOX, and EuroFIR. Communicating EU food and health research is important for non-governmental organisations (NGOs), authorities, and other policy-makers that are stakeholders in Community research, European Commission officials, science journalists, especially those with special interest in the biosciences, ongoing FP6 consortia, newly FP6 research consortia, planned FP7 research consortia and other groups interested in the management of science-society issues and/or communication of the biosciences.

2. THE ROLE OF SCIENCE COMMUNICATORS

Why do we need science communicators? Scientists have always known how to do research and how to educate graduate students; however, they do not often have the skills to communicate successfully beyond the scientific community. Moreover, they do not have the time; often do not see the need to communicate to a broader public and some are unwilling to do so due to lack of experience, confidence, incentives etc.

One reason for this is that public communication is a specialist skill. As communication managers form a link between scientists and stakeholders/society, they must be multi-skilled and must have profound knowledge of the scientific activities in their respective projects.

Communication managers must also be able to meet the European Commission’s requirements for effective dissemination of research results and achieve successful integration with stakeholders. They should also bridge the gap between the scientists of his/her own consortium and the public.

Then comes the question: Who do we communicate with? “Internal communication” means setting up a communication infrastructure, preparing and distributing regular newsletters, creating a private website, building online discussions for organised internal meetings, holding active continuous communications with partner institutes by means of networking being present at presentations and attending conferences. “External communication” includes media relations, television, radio, and contact with print journalists and web journalists.

By using media communications, the public and non-scientific stakeholders can ultimately be reached and press releases and/or press conferences are an ideal tool for the dissemination of research results.

Networking is another tool for making contacts, establishing relationships, forming new collaborations and sharing experiences – particularly within FP6 networks of excellence (NoEs) and integrated projects (IPs).

The marketing of the consortia themselves and of results obtained within the consortia by writing articles for external magazines and journals, by editing press releases, brochures, public magazines and newsletters, as well as having exhibition stands and producing giveaways with a link to the project is important too.

For communication managers, training in science communication is essential. This can be done e.g. by attending short courses in science communication, workshops
in crisis communication or lectures on the subject of cultural differences in communicating. Furthermore, the approval of a joint communication plan is highly recommendable.

Science communicators must co-operate closely with their administration in reporting to the European Commission and project members, and when preparing the annual report. Science communicators have to be involved also in the editing and translation of reports and press releases, in budget responsibility, in financial accounting, in staff management, in the organisation of meetings and all kinds of events.

In conclusion, communication managers have a vital role in EU research consortia. They need multi-skills and have to work according to current best practices. This is all of utmost importance because good communication of their projects leads to greater understanding of science by stakeholders and the general public.

As the overall aim of our projects within the food quality and safety area is to improve consumers’ health and wellbeing, successful communication will make these requirements a reality. Lastly, better science renders European industry more competitive by means of improved co-operation, reduced duplication of research and more funding opportunities.

3. HOW TO REACH YOUR STAKEHOLDERS?

There are two important questions which communication managers must ask:
- Who is your target audience and
- Who are the stakeholders of your project?

In order to be able to answer these questions, communication managers first have to ascertain the project goal. Is it to develop a specific framework or model or is it to develop a specific test or technology or to generate knowledge in a precisely and well defined domain (health, food, allergy), or is it to create a network to exchange knowledge? Or is the project aiming at preventing allergy, enhancing food safety, or solving nutritional problems or is it about training or education? After they have defined the answers to the first questions, and before selecting dissemination tools, communication managers must identify the stakeholders involved.

The aforesaid stakeholders can be, for example, consumers, patients (or their organisations), a defined or undefined research community, health professionals, policy and decision-makers, media professionals, communicators, food or other industries, NGOs, food safety authorities or intergovernmental organisations. Once they have identified the stakeholders, communication managers have to define their message to them and to target their audience.

Success stories of the manner in which to involve stakeholders are for example: active participation of industry partners in EU projects and with groups of patients, having stakeholders as members of project advisory boards or as participants in meetings of the consortia and in conferences, and also the organisation of specially designed stakeholder consultation events.
In conclusion, the challenges for a communication manager are the following: to hold good balance of internal versus external communication, involve all project partners equally in communication, ensure dissemination across all EU countries, have an overview and understanding of all ongoing research activities within the project, check regular flow of information and develop strategies to maximize output in a limited period of time.

4. IMPLEMENTATION OF RESEARCH OUTCOMES IN/ BY ‘SOCIETY’

In this section we are using the two following definitions: research is a “careful, systematic study to establish facts and principles to advance existent knowledge, and to develop technology” and innovation indicates a series of operations and processes whereby such facts, principles, technology or knowledge (created, disseminated and distributed) are utilised.

The results of innovation are made evident in competitive products, industrial processes and services.

Against this background, the diffusion of innovations can be defined as the process by which the innovation is adopted into a social system.

The position of industry regarding the creation and use of the result of research and innovation is that industry forms an important part of the social and knowledge system and consequently must fully participate in the creation of research-led innovations. Industry is the main mediator of the link between research and consumers.

What is the manner in which one can speed up the adoption of the results of research and innovation by industry and later on by society? Important factors are:

1. any innovation must contain a relative benefit, which means it must be better than the idea it supersedes,
2. good compatibility, which means consistency with past experiences and the perceived and real needs of receivers,
3. a certain and limited degree of complexity, meaning that it is not too difficult to understand and use,
4. a trial run which makes it possible to experiment over a limited time, and finally
5. observability, by which it is made visible to others.

The adoption of innovation by industry is influenced by different issues like firm technology strategies and existing investments, the respective management of product development processes, the new product concept development, the quality of links with the research system, the entrepreneurship and the quality of internal organisational design.

The adoption of innovation by organisations relies on developments in the environment of the different industrial sectors and the stakeholders’ influence. But to a great extent, it also depends on internal company practices for new product development and the adoption of research-led knowledge and innovation.

In conclusion, research-led innovations need to possess specific characteristics for faster adoption. Industry has a mediating role regarding implementation of research
in, or by, the wider ‘society’ and further understanding of what is going on within the
industry and firms in the different sectors to speed up the adoption of the outcome of
research. Innovation must be based on research.

5. COMMUNICATING WITHIN EU-FUNDED PROJECTS

IPs and NoEs within the food quality and safety areas of FP6 receive funds up to
EUR 17 million per project. However, total budgets are much higher than the EU
contribution, as many partners have contracts granting only 50% of their total
efforts. About 3000 scientists are fully or partly engaged in the 15 consortia forming
the FP6COMMNET at present. Most of these were granted as a result of the first
wave of proposals under FP6. More projects have been granted since, and new pro-
jects will be adopted as they come through the negotiation stage and start operating.
Furthermore participation is encouraged in the European Technology Platform ‘Food
for Life’, which is mainly industry driven.

Within the EU-funded projects, the following issues are addressed by
FP6COMMNET:

• How does one communicate with potential new partners in countries not repre-
 sented in the consortia when these countries have different languages (e.g. new
 Member States)? Strategies that can be used were suggested like, for example
 local meetings using the respective language or communication at a simple and
 generally understandable level.

• Based on their experience, FP6COMMNET members agree that a separate budget for
 communication in FP7 is absolutely necessary to disseminate information from the
 scientific consortia to scientists outside of it and to people in the street and that this
 money cannot be taken out of the limited management budget. This separate budget is
 also necessary to train scientists in media skills or to hire professionals to do the job.

• The extent to which industry is the mediator between researchers and society and a
 necessary link in the implementation of results can be discussed. Different
 approaches exist in relation to this issue. In order to obtain the effective transfer of
 technology, large multinational companies are sometimes ideal partners. But there are
 also other bodies which SMEs (small and medium-sized companies) should target.
 How can researchers best reach the industry? There seems to be a consensus for estab-
 lishing specific platforms or for identifying target groups in industry. Furthermore, it
 is considered a “must” to also include transfer of money into development and
 transfer of knowledge into industry. If industry is not involved in a project and stands
 outside of it, it can be involved and pulled in via platforms. Ideally, however, the
 industry should be directly involved in a project as a partner. In addition, industrial
 associations must be approached and invitations for conferences should preferably be
 sent to them as they can distribute the material further to their members.

• Presentations must be balanced to embrace different target groups and also
 groups who are critical of the project. The knowledge should be made under-
 standable for everyone in order to form a collective conscience and to re-open
 closed minds.
• Can basic research be communicated? The authors answer yes, but the research should be in a form that is understandable to all levels of the public and is clearly thought through beforehand to avoid creating a situation of panic. FP6COMM-NET members can provide interesting examples.

• According to the European Commission, there might be better guidance under FP7 on how to use the budget for the purpose of communication. The recommendation for new or ongoing projects in FP6 is, however, to put communication issues in separate work packages and to make proper budget allocations for them.